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ABSTRACT
The motivations for holding this workshop came from the recently discovered associations between

proximity graphs and Pathfinder networks. The elegant theoretical domain and the breadth of applica-
tions make this a very rich area indeed. The workshop was attended by several of the leading researchers
in proximity graphs, and was organized so that there would be adequate opportunity for discussion of
common interests. The presentations were organized into four sections: theoretical foundations, algo-
rithms and computational aspects, applications, and graphics and unsolved problems. There were also
demonstrations of three systems based on proximity graphs: information retrieval using Pathfinder net-
works, a robotic vision database system organized as a monotonic search network, and a UNIX help sys-
zem on a Hypertext Browser organized as a Pathfinder network. A tool to display and manipulate large
graphs was also demonstrated. The workshop brought together some mainstream graph theorists and the
researchers who had been working on proximity graphs as a special case of graph theory, and the inter-
change was profitable for all.
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PREFACE

The motivations for holding this workshop came from my recent discovery of the
research on proximity graphs, by means of my own studies in the development of
Pathfinder networks. The fascinating theoretical associations which have come from
the work on proximity graphs, and the breadth of applications of them, make this a
very rich area indeed. The connections with computational geometry and complexity
theory, the modeling of aspects of vision and perception, and of human associative
memory, all contribute to the promise of the perspective afforded by proximity graphs.
In my early work (as evidenced by the transparencies herein), I had named these
graphs empty-neighborhood graphs, with the intent of generalizing the concept beyond
the well-known cases which had been studied, before realizing that others had called
them proximity graphs. But the name itself is of relatively little importance; the
domain is the thing, and it is a veritable banquet of interesting problems and applica-
tions.

The workshop was designed to be as informal as possible, and the intention was
to have the contributors present their most recent work; thus no formal papers were
expected, and the proceedings consist of abstracts and transparencies. Unfortunately,
the editor has moved in the intervening time, and this has caused the delay in the final
organization and distribution of these proceedings; I offer my apologies to all.

I would like to express my grateful appreciation to those who helped make this
workshop possible: those who came from many places and presented their work, and
participated in the many discussions; to Kamal Abdali of NSF, and Marc Lipman of
ONR, who encouraged the workshop with their moral support, and who also aided in
obtaining financial support; to Marc Lipman for attending and moderating the panel
discussion; to the graduate students at NMSU, who helped in many ways in preparing
for the workshop, in giving demonstrations and in acting as hosts for the visitors; to
my research colleagues at NMSU--particularly Ken Paap, Roger Schvaneveldt, Jim
McDonald, Art Knoebel, and Keith Phillips--with whom many profitable discussions
were held; to the Department of Computer Science and the College of Arts and Sci-
ences at NMSU, for their support and encouragement; and to Frank Harary, whose
insights in both graph theory and workshops helped in numerous ways.

Don Dearh-ilt
Mississippi State University
May 22, 1991
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I ABSTRACT

Introduction to Pathfinder Networks (PFNETs) and
Relationships Between Them and Proximity GraphsI

Donald W. Dearholt
Department of Computer Science

Mississippi State University3 MS 39762

A graph model for human semantic memory (named "Pathfinder") has proven to be a rich source
of associations with both graph theory and computational geometry, including proximity graphs. New
theorems and heuristics have been devised based upon the properties of Pathfinder networks, and a new
class of proximity graphs has been defined. Relationships with previously studied proximity graphs have
also been established. Applications resulting from the research in Pathfinder networks include online
help systems, a hypertext browser, and a vision database intended for robotics applications. These
applications feature the organization of information according to the principles of organization of
Pathfinder networks. As such, these applications support various levels of abstraction and clustering,
and principled associations between clusters. The advantages of using Pathfinder-based networks in the
human-computer interface or a specialized database include (1) the provision for a good "cognitive
match" with users, (2) higher levels of abstraction and clustering are supported, (3) the organization is
typically nonhierarchical, allowing multiple paths of access to needed information, and (4) the most
salient relationships (often the most frequently used paths) are represented explicitly as edges in the net-Iwork.
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OUTLINE

I
I. MOTIVATION, PERSPECTIVE, AND OBJECTIVES I

fl. PATHFINDER NETWORKS I

A. DEFINITIONS AND PROPERTIES

B. APPLICATIONS

III. EMPTY-NEIGHBORHOOD (PROXIMITY) GRAPHS

A. DEFINITIONS AND PROPERTIES

B. APPLICATIONS

I
I
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PHILOSOPHICAL STANCE: BETTER MODELING OF HUMAN

INTELLIGENCE WILL LEAD TO BETTER Al

I
* THE NETWORKS WE ARE STUDYING:

DESCRIBE, SUMMARIZE, AND DISPLAY DATA

* SUGGEST A PSYCHOLOGICAL MODEL ABOUT

MENTAL REPRESENTATIONS

I COMPLEMENT MDS AND CLUSTER ANALYSIS

I PROVIDE A PARADIGM FOR:

3 KNOWLEDGE REPRESENTATION

MODELS OF CLASSIFICATION

3 ORGANIZATION OF DATABASE SYSTEMS

SPREADING ACTIVATION (SEARCH)U
I
I
I
I3
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THE BIGGEST CHALLENGE

FOR AI AND COGNITIVE MODELING:

TO DESIGN A SYSTEM WHICH DOES MANY THINGS WELL, I
ALTHOUGH EACH ALGORITHM MIGHT NOT BE OPTIMAL

ASSOCIATIONAL ORGANIZATION 3
CLUSTERING 3
SEVERAL LEVELS OF ABSTRACTION

CLASSIFICATION I
SEARCH

DESCRIPTION OF DECISIONS I

I
I
I
I
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* RESEARCH OBJECTIVES

I I. THEORETICAL

* DEVELOP AND TEST METRICS

* RELATIONSHIPS:

GRAPH THEORY

I PATH ALGEBRAS

PROXIMITY GRAPHS (RNG, GG, DTG)

LEVELS OF ABSTRACTIONI
H. EMPIRICAL

SEMANTIC MEMORY

I CLASSIFICATION MODELS

I PROPOSITIONAL ANALYSIS

* KNOWLEDGE EXTRACTION FROM EXPERTS

III. APPLICATION DOMAINS

* ORGANIZATION OF CONCEPTS

INTERFACES--INFORMATION RETRIEVAL, HELP SYSTEMS

3 DATABASE ORGANIZATION

PERCEPTION--OUTLINES OF OBJECTS

I5
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WHY USE GRAPHS?

ALTERNATIVES:

MULTIDDvWNSI0NAL SCALING

CLUSTERING

CORRELATI d N MATRIX I
GRAPHS HAlvE BEEN USED FOR:

K'N.OVLEDGE REPRESENTATION

CONCEPT LEARNINC

MODELS OF SEMANTIC MEMORY I

ORGANIZATION OF A DATABASE SYSTEM I
ASSOCIATIVE SEARCH I

CLASSIFICATION

DESCRIPTION AND DECISIONS

I

I
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i WHAT IS SIMILARITY?

I I. SUBJECTI E

i IS LIKE
IS SIMILAR TO

A RESEMBLES B
IS A KIND OF
PARALLELS

i PURPOSE: CONFERS PROPERTIES OF B UPON A

ONLY ESTIMATES ARE AVAILABLE

CAN BE ASYMMETRIC

i RESULT OF DIFFERENT ASSOCIATIONS/FEATURES

I II. OBJECTIVE

i Li OR L2 NORM (DISTANCE)

SET INTERSECTION
_ (CO-OCCURRENCE)SETL UNIONI

i
I
I
I
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EXAMPLES OF ASYMMETRIC SIMILARITY

I
NORTH KOREA IS LIKE CHINA

THE PORTRAIT RESEMBLES YOU I
TRUE LOVE IS AS DEEP AS THE OCEAN

LIFE IS LIKE A PLAY

A PLAY IS LIKE LIFE 3
I
I
I
I
I
I
I
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i THE METRIC AXIOMS

I
GIVEN ENTITIES A, B, AND C:

3 1. THE DISTANCE BETWEEN AN ENTITY AND ITSELF IS ZERO

I(Q
32. THE DISTANCE FROM A TO B IS THE SAME AS

THE DISTANCE FROM B TO A

3. THE DISTANCE FROM A TO C IS LESS THAN OR EQUAL

TO TILE DISTANCE FROM A TO B AND THEN TO C

3B
A C

I
I
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DEFINITION I

A PATHFINDER NETWORK (PFNET) IS A GRAPH BASED ON i

PAIRWISE ESTIMATES OR MEASURES OF DISTANCES

BETWEEN ENTITIES. I
EACH ENTITY CORRESPONDS TO A NODE.

EACH PAIR OF NODES IN A PFNET IS CONNECTED DIRECTLY

BY AN EDGE WHOSE WEIGHT IS THE DISTANCE BETWEEN

THE TWO ENTITIES, I

UNLESS THERE IS A SHORTER ALTERNATIVE PATH.

I
I
I
I
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EXAIMPLE OF A LABELED PFNET

I PENGUIN

3 7E~ MCTB4 PRI, MCSTA

HAK GOOSE
SEC, MCSTA



TOUCHSCREEN DISPLAY FOR EMPIRICAL DATA

HOW STILnAR IS A TO B?

A

B

OKI

DISTANCE + SIMILARITY =KI

12
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THE PARAMETERS OF A PFNET

I
R-NMETRIC:

I RULE FOR FINDING THE LENGTH OF A PATH WITH K

EDGESI
* K

L (P) L WIR]aIR

I=1

R PATH LENGTH DATA SCALE

1 SUM OF WEIGHTS RATIO

2 EUCLIDEAN RATIO

I MAXIMUM WEIGHT RATIO, ORDINAL

I

I



THE PARAMETERS OF A PFNET

Q-PARAMETER:I

"DIMENSION" OF GENERALIZED TRIANGLE INEQUALITIES SATISFIEDI

BI

Al I
6D I0

A! [BR+CR+DR]IR

14
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I THE TRIANGLE INEQUALITY

B

I

IA E<+
* D

A <E +D <B +C +D

N THE GENERALIZED TRIANGLE INEQUALITY

3 ~B
3 A 7C

3 D

i A <[BR+CR+DR],R

I
PURPOSE: TO PRESERVE MINIMAL-DISTANCE PATHS

I
I
* 15
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DIRECTED PENET FOR NINE COUNTRIES

RUSSIA
FRANCE

13I
ENGLAND U

U S A C U B

R-METRIC IS INFINITY

Q-PARAMETER IS EIGHT

16
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i THEORETICAL RESULTS

I
FOR A GIVEN DISTANCE MATRIX,

PFNET(R ,Q):

* IS UNIQUE,

i PRESERVES GEODETIC DISTANCES,

LINKS NEAREST NEIGHBORS, AND

CONTAINS THE SAME INFORMATION AS THE

I MINIMUM METHOD OF HIERARCHICAL CLUSTERING

3 PFNET(R =oo,Q =N-1) IS THE UNION OF ALL MINTREES

PFNET(R 2,Q) IS A SPANNING SUBGRAPH OF PFNET(R 1,Q)

IFF R 1<_R 2

PFNET(R ,Q 2) IS A SPANNING SUBGRAPH OF PFNET(R ,Q 1)

I IFF Q 1<Q 2

MONOTONIC TRANSFORMATIONS PRESERVE

STRUCTURE FOR ALL PFNET(R =oo,Q)I
MULTIPLICATIVE TRANSFORMATIONS PRESERVE

STRUCTURE FOR ALL PFNET(R, Q)

*17
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OPEN PROBLEMS II
CLASSIFICATION

METRICS

STRUCTURE

EDGE LABELS

STABILITY

LEVELS OF ABSTRACTION I

GRAPHICAL REPRESENTATIONS I

I
SEARCH

SPECIALIZED DATABASES I

SPREADING ACTIVATION I

MATCH CRITERION I

EXPLOITING PARALLELISM I

SEARCH I
CLASSIFICATION I

18
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I APPLICATIONS FOR PATHFINDER-BASED

ASSOCIATIVE NETWORKSI
I. INTERFACE DESIGNI

HYPERTEXT BROWSER (HYBROW)

DOMAINS: UNIX CONSULTANT, INCIDENT DATABASE

INFORMATION RETRIEVAL (PATHTRIEVE)

DOMAIN: ABSTRACTS OF DOCUMENTSI
MEASURE OF PROXIMITY: CO-OCCURRENCE OF CONCEPTSI

II. DATABASE ORGANIZATIONI
ROBOTIC VISION SYSTEM

I DOMAIN: FOURIER VECTORS OF OUTLINES OF OBJEC!

MEASURE OF PROXIMITY: L2 NORM DISTANCE

I
I
I

I



The Typical Friendly User Interfaoce .... I

CROISS THAI LINE

AND I'LL .....

20
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* COMPUTER VISION

I
GOAL: SCAN THE ENVIRONMENT AND MAKE DECISIONS

I WITHOUT HUMAN INTERACTION

REQUIRES: KNOWLEDGE REPRESENTATION

CLASSIFICATION

ABILITY TO DESCRIBE SCENE

I RECONSTRUCT SCENE

ENHANCE SCENE

MODIFY SCENE

I

I
I

* 27
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DEFINITION OF AN

EMPTY-NEIGHBORHOOD GRAPH
I

An ENG is a graph in which a link IJ is in the ENG if
and only if an open neighborhood associated with N i and i
N i is empty of all other nodes (points).

If each pair of nodes determines a unique neighborhood then
the graph is referred to as a single-neighborhood ENG.

If each pair of nodes .determines a set of possible neighborhoods.
then the graph is referred to as a family-neighbortood ENG.'

./ \i

\. \ - / I ,

SINGLE NEIGHBORHOODS

Z. I

A FAMILY NEIGHBORHOOD II

28
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I GENERATION OF A PROXIMITY GRAPH

I
SET OF POINTS

I Lk Lk

COMPUTE ALL LUNES COMPUTE W MATRIX

AND GENERATE GRAPH AND GENERATE PFNET(R ,Q)

I
I
I
I
I
I
I
3' 29
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RELATIVE NEIGHBORHOOD GRAPHS

DEFINITION: Ni AND N1 ARE LINKED IN RNG (L 2) 1FF

d (Ni, Nj) d (Ni, Nk)

ORI

d (Ni, N]) d (Nj, Nk) FOR ALL Nk

PATHFINDER NETWORKS

DEFINITION: Ni AND Nj ARE LLNKED IN PFNET (L 2, oo 2) 1FF

FOR ALL PNk

THEREFORE RNG (L 2) = PFNET (L 21 00 2)I

30I
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* GABRIEL GRAPHS

I DEFINITION: Ni AND Nj ARE LINKED IN GG (L 2) FF

i dij <[dk 2+dk 211/2

I FOR ALL Nk

I
Nk

i g Yj

PATHFINDER NETWORKSI
DEFINITION: N i AND Nj ARE LINKED IN PFNET (L 2, 2, 2) 1FF

diJ:<M IfN[ MAX[dk 2+dkj 2] 1/21

FOR ALL N

i THEREFORE MGG (L2) = PFNET (L 2,2,2)

I
i 3
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DELAUNAY TRIANGULATION GRAPHS I
I

DEFINITION (O'ROURKE): Ni AND Nj ARE LINKED IN

D TG (Lk ) IFF THERE EXISTS AN OPEN BALL B WITH

BOUNDARY S SUCH THAT: I
1. S PASSES THROUGH N and Nj, AND

2. B IS EMPTY i

N I

/I

I
DTG(L 2)

32 I
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A HIERARCHY OF

1EMPTY -NEIGHBORHOOD GRAPHS

3PFNET(L 2, ooN-1)

3 RN(;(L 2) = PFNET (12' 00 2)

PFNET(L 2 , r, 2)

GG (L 2 ) M5NET(L 2)

MGG (L 2 ) = PFNET (L 2' 2, 2)/

3 DTG (L 2)

PFNETL 2, 1, 9

EACH GRAPH IS A SPANNING SUBGRAPH

OF THE GRAPH BELOW IT

35
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Centrality in Proximity Graphs

Fred Buckley
Mathematics Department
Baruch College (CUNY)
New York, NY 10010 I

Abstract

Over the years many different centrality concepts have been
developed. Their most important use in applications has been in
facility location problems. In these problems, one typically
wants to determine a "good" location for a proposed facility such
as a police station, hospital, power station, telecommunications
switching center, or a collection of railway depots. Which
centrality concept to use depends on the application. We
discuss centrality concepts and indicate approaches for their
determination in proximity graphs. Recent results for two
different types of centers of polygons are also described.

I
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I ABSTRACT

I Rectangle Proximity Graphs and Rectilinear Shortest Path Problems

I
D. T. Lee

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201I

We introduce the notion of rectangle proximity graph for a set of points in the plane. Given a set
S of points in the plane, two points p and q are connected by an edge if the corresponding rectangle
defined by p and q does not contain any points of S in its interior or on the boundary. The induced
graph is called a rectangle proximity graph. It is shown that the rectangle proximity graph can be used
to solve the rectilinear shortest path problem between two points in the presence of (rectilinear) obta-
cles. Although the proximity graph on a set of n points may have 0 (n2) edges, an appropriate
representation, called shortest path preserving graph (SPPG), with O(nlogn) vertices and edges can be
obtained so that the rectilinear shortest path problem can be solved in 0 (nIo 2n ) time. An0 (nlog (112)n) time algorithm can also be obtained with a SPPG of size 0 (nlog (32n).

I
I
I
I
I
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RECTANGLE PROXIMITY GRAPHS 3
and

RECTILINEAR SHORTEST PATH PROBLEMS

i

D. T. Lee U
U
U

Department of Electrical Engineering
and Computer Science

Northwestern University
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I Rectangle Proximity Graph- RPG
Graph G = (V, E) in which V is a set of n points, p,, i = 1, 2,... r

I in the plane, and two points p,, p, are connected by an edge
(pz,Pj) E E, iff the rectangle Pj determined by these two points is

I empty, i.e., no other point in V lies in Ri-.

I Disk Proximity Graph - Gabriel Graph (GG) - .

Graph G =(V,E) in which V is a set of n points, pi, i = 1, 2,.n
in the plane, and two points pi, pj are connected by an edge
(pi,p 3 ) E E, iff the disk D,, determined by these two points is
empty, i.e., no other point in V lies in Dd.I
Lune Proximity Graph - Relative Neighborhood Grapl

I (RNG)-
Graph G =(,E) in which V is a set of n points, pi, i = 1, 2,..., n.

I in the plane, and two points Pi, pj are connected by an edge
(Pi, pj) E E, iff the lune Lij determined by these two points is

I empty, i.e., no other point in V lies in Lid.

ICircle Proximity Graph - Delaunay Graph (DG)

Graph G = (V, E) in which V is a set of n points, p, i 1, 2,..., n,
in the plane, and two points pi, pj are connected by an edge

(Pi, P3 ) E E, iff there exists a circle KIj passing through these two
points is empty. i.e.. no other point in V lies in KijI.

I
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Lune Proximity Graph - RNG C Disk Proximity Graph- G(U
* Disk Proximity Graph - GG C Circle Proximity Graph- DC

Circle Proximity Graphs can be computed in O(n log n) time.(L c

Lune Proximity Graphs can be computed from DG in O(noz(n)) time.

Li-metric (or L,-metric)( _ KcQ>
| RNG C GG C DG C RPG

U AkA2'a ( V) g(rk.wkLgadMe)

I ( , %),E f (,..

. Grath,

I 2.6
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Algorithm RPG for a set of poiats

Complexity O(n login) + K, K: is the output size. N
Divide-and- Conquer Approach

Step 1 Divide S into two subsets S and S 2 by a vertical line V.

Step 2 Recursively build the RPG's for S and for S 2.

Step 3 Construct edges connecting points in Si and in S2 as follows. I
Step 3.1 Scan the points in S from bottom up, and main, ain a

'staircase' for each point in S1 and in S2.

Let S and S 2 denote the sets of staircases for points in S1 I
mr-d in S2 respectively.

Step 3.2 If the next point pi is in S1 , consult the staircases in I
S2 and decide if an edge is to be introduced for pi and
points in S2 .

Step 3.3 If the next point pi is in S2, consult the staircases in

S, and decide if an edge is to be introduced for pi and

points in S1. I

Note: Only the topmost point of each staircase is needed.
Bin& rY Seerh is performed i. QSto-Pr 3-2 ad 3-3
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/I
Rectilinear Shortest Path Problem
Given n isothetic rectilinear obstacles R 1, R 2,..., R, each with a
positive weight Ri.w, i = 1, 2,..., n, and two distinguished points s

I and t, in the plane, find a shortest rectilinear path connecting s and t.

*Definition 1

Let l7it denote arectilinear path connecting s and t.
11,t is denoted as: qi,p, q2, p2, q3,P3,... qk,Pk, where qt is a subpath

* outside any obstacle, and p, is a path completely within R.'
q, or Pn may be empty.

Ii

* Weighted length:
k k

dw(fl 5.) ,- = (Iqil + Ipd1) + ;(Ri-w * IP)-

*Note: Collision Free Path: Ri.w = cc for all i.
pi = =,i = 1,2,...,k.

I Optimal Path: l7.t

U Path Length: dw*

6I s - "l

I
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/ V set of vertices of obstacles Ra U {s, t}.

I set of internal projections

{Pr, Pt, Pu, PdIP a concave vertex} I
U{qr,ql, qu,qdlq E {s,t},q E P}I

V= V uI I
Definition 2

Point p 1-dominates point q iff p.x > q.x and p.y > q.y.
Point p 1-directly-dominates point q iff there exists no point-r I
such that p 1-dominates r and r 1-dominates q.
i-(directly)-dominating relations are defined similarly i = 2,3,4. I

Definition 3

A vertex p of obstacle Q is 1-directed iff the boundary edges
incident on p are in the +X and +Y directions, abbreviated as I
(+X, +Y) directions. Similarly, we define 2,3 and 4-directed vertices
if the boundary edges are in (+Y, -X), (-X, -Y) and (+X, -Y)

directions respectively.

Definition 4

For p E V, S1(p) = {qq E V and I

q i-directly dominates pV}.
S(p) =u Si(p). 6

Ai(p) = {qlq i-dominates p, and
q does not i-dominate r, r E Si(p)}.

A(p) = U, A(p). I
i-staircase SC(p) = boundary of region defined by A-(p).

66
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Lemma 1

A(p) nV = {p}, i.e., A(p) contains no point of V except p itself.

Lemma2 

At(p), i = 1, 2, 3, 4 satisfies one of the following properties:

1: Ai(p) is totally outside any obstacle,

2: A;(p) is totally within an obstacle,

3: Ai(p),contains only vertical strips, or

4: A,(p) contains only horizontal strips. I
Lemma3 I

Let p be a concave vertex of obstacle Q with internal projections pr
and p,- Then Ai(p), i = 1, 2,4 are all within Q and both A 2(p) and
A 4(p) are rectangles.'

Lemma 4

Let p be an i-d-irected convex vertex of Q.
Ai(p) is a rectangle within Q. Other symmetric casesihold. I
Lemma 5

Consider an internal projection, say Pd, of a concave vertex p of Q.
Both Al(Pd) and A2(Pd) are rectangles within Q. Other similar cases
hold.

Lemma 6

If s (resp. t) lies in Q, A(s) (resp. A(t)) lies in Q.
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Lemma 7

Consider a rectangular area R in obstacle Q, and let r E Q. Then fi
any point q 0 int(R), there exists a shortest path lrq that passes
through one of the projections r., rd, rl, or rr on bd(R).

II

I, I
II

I
I
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Theorem 1

For any two points u, w E V, w V A(u), there exists a shortest path,
11, that passes through at least one point of S(u).
Proof: Consider only the cases in the 1st quadrant with u being the
origin.
Let p and q be two consecutive points in Si(u). Assume that
I = rIul{II*w, where r E SCI(u) lies on horizontal part between p

I and q, and rf* totally lies in A,(u).
Let p' be the left projection of p on the Y-axis.

Case 1 Al(u)"outside of any obstacle.

I Case 2 Ai(u) contains only vertical strips.

Case 3 A 1(u) contains only horizontal strips.

* Case 4 Al(u) totally lies in an obtacle Q.
This case is more complicated.

I Case 4.1 u is a concave vertex.
case 4.1.1 u is 3-directed.

*case 4.1.2 u is 2-directed.
A, (u) is a rectangle It and p= p.

II "tsr =UPIOF
case 4.1.3 u is 4-directed.

I If pW lies on bd(Q), done.
Since A,(u) is a rectagle (u, q, m, 1) E Q, from Lemma 7,
I Hw must pass though one of the following:

* (a) Through rd: Impossible.

!71
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* (b) Through r,: rl,II.II = U1l [I*l,.w
(c) Through ru: I"UrIllID = -u11loverlinelruI lrI*

I (d) Through rl = p: Done.

* Case 4.2 u is convex.

Case 4.3 u E I. Similar to Case 4.1.3.

I Case 4.4 u E {s,t}. A(u)E Q.

I

I
I
I
I

I
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II
Algorithm RSP- Graph-Theoretic Approach

Step 1 Compute V = VuI. I
Step 2 Compute for each v E V its staircase SC(v).

Step 3 Compute the Graph G = (V, E), where

(v, u) E E if u E SC(v); assign weight to each edge. I
Step 4 Apply Fredman/Tarjan's algorithm on G.

In the worst case E has O(n 2) edges and it needs Q(n 2) time to
coistruct G.

I
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Cao W~t - Addin Steinier Points'

Definitlon 5

U r~oi~t p ~ q asa~dto ~visial -from each other if the segment
* 'j~is, eithert1oka .Fr o~isic& -*B the ohstales or totally inside some,

s Acl. Al eLI dtoe visble from -apoint p if and onily if.
* ... 'the prendicularpojetion~ on L isv~isible frmp.

.,,Iat T e orbya anyp and
Ppresented a edge , p) foE

qE' S- ); ca be obtain~d by one of th followig. -I U. R-x: V.soT
* *~- ase ip~d ohvisible fromn a' vertical line V seara.ng

-t tem.'
* ll~~~ ~ ~ whe.re p' adqare projectosfpad4n

I-..
.- ' -case 2 p.and q ,are both- visbile fromf a ,:rizontal ln i separaiPVn

* ~theum >. .-

fllp = 17q ~ where p'and q'ate projections of p a,~

* ae 3' vuDp.t-

onTe' prjcFro~ pouOta are 'Steiner -po sn.
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I
Construction of Weighted Graph G'

* Draw a vertical "cut" line V through the median of the
* X-coordinates of all the points in V.

A horizontal cut line is drawn similarly. (Only vertical case is

I given.)

* Let 1- and VR4 denote the vertices of V that lie to the left and
right of V respectively, and 7M- the vertices of V that lie on V.

* For each point p E VL U VR, if p is visible from V, we create a

Steiner point p' and the edge (p, p') E E with weight equal to

We create for every two consecutive points on V an edge in E
with weight computed using a plane sweep method.

* Recursively do the same thing on the sets VL and VR- respectively.

Compute the weights of edges connecting two consecutive points on
I every cut line Vi, i = 1, 2,... N, by plane sweep.

step 1 Preprocess the obstacles by partitioning each of them into
rectangles by introducing horizontal segments.

step 2 Sweep downward the ordinate of of those Steiner points and
horizontal edges of the rectangles in the order of 1, p and u.
Consider, the Steiner points that are on some cut line Vi, with
which two attributes Vi.w and Vi.s are associated.
V,.w the accumulated weight and

I V,.s the last swept Steiner point on Vi.

I
I

I



I

step 2.1 When the sweep line reaches an upper edge (u) of a
rectangle, do nothing.

step 2.2 When it reaches a lower edge (1) of a rectangle, add
the weight of that rectangle (i.e., the product of the weight
and height of the rectangle) into Vi.w.

step 2.3 When a Steiner point (p) is reached, we can calculate
the weighted distance between it and the last one (recorded in
Vi.s); set Vi.s to the current Steiner point and reset Vi.w.

Lemma 9 I

The graph G = (VG,, EG,) generated in algorithm RSP has I
O(n log n) vertices and edges.

Theorem 2

Algorithm RSP runs in O(n log 2 n) time and O(n log n) space. I

Bottleneck of Algorithm RSP: Size of graph is O(n log n). U
Consequently, steps 3 and 4 run in O(n log2 n) time.

I
I
I
I
I
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Alternative Approach - Trading #vertices with #edges

Idea: Partition the points in each recursive step into strips
such that each strip contains V n points.

Need much fewer Steiner points.
For points in the same strip, we create edges between all pairs.
As a result, # vertices is O(n log1/ 2 n), and # edges is O(n log3/ 2 n).
Algorithm RSP'- O(n log 3/ 2 n) Time and Space
This algorithm is the same as RSP except that we replace step 3 by
the following:

3. (Construct Steiner points and add extra edges)

3.1 Partition the points into horizontal strips such that each
strip contains O(./1Wn) points, where n is the total number
of vertices.
Divide the points by a line V with V.x equal to the median of

* all the X-coordinates of the points.
In each strip, we keep only the two extreme Steiner points,

fu, fd.

Insert edges between the two Steiner points and the
corresponding points.

3.2 (Construct edges in each strip)
Let H denote the set of points horizontally visible from V
and fu, fd.
Let H.1 denote the set of points in H that are on V and to

* the left of V, and let H.r denote the set of points in H that
are on V and to the right of V.

I



3.2.1 Calculate the weighted path length between every two

consecutive potential Steiner points (projections of points

in H) on V.

3.2.2 Create a table storing the weighted distance between

every pair of points in H using results obtained in step

3.2.1.

3.2.3 With the table we construct a new table storing the

weighted distance between each pair of points one in the

H.l and the other in H.r.

3.3 Do the same thing recursively to the set of points to the left

and to the right of V.

Lemma 10

The graph G = (VGi, Ec,) generated in Algorithm RSP' has

O(n VTl ) vertices and O(n log3/ 2 n) edges. Proof:
There are O( n ) strips, each containing O(Vl-9i) points. The

total number of strips is O(nvT 6 n).

Only 2 Steiner points per strip are added to VG,.

The number of edges connecting Steiner points and the points from
which they are projected is O(nv/l-9i).
The number of edges that are constructed for the points in each strip
is O(log n).
Thus the total number of edges in EGv is O(n log3/ 2 n).

Theorem 3

The algorithm RSP' computes the shortest path from the point s to

the point t in O(n log3/ 2 n) time and space.

82I

82!



I
Pr

I Open Problems

* Can one compute the shortest path in 0(n log n) time and 0(n)

space?

* What if the obstacles are of arbitrary shape?

P~ #-n-mRG-e- eompuie i togln})tme+ ..

.. 3- - - .!I
I

I
I

It
I

I
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Weighted Segment Trees I

Segment trees for a set of intervals on the real line with n endpoints N
normalized to integers in the range [1, n + 1). 3
Given integers 1, r, I < r, segment tree T(l, r) is recursively built as
follows:
It consists of a root v, with attributes v.B = I and v.E = r, and if
r -1 > 1, of a left subtree T(l, [v-B+v'EJ) and a right subtree
T(L!FEJr). M

I

I

standard intervals:
[v.B, v.E) for each node v. I
elementary intervals:

[l,l + 1),[1 + 1l+ 2 ),..., [n, n + 1)- leaf nodes

For r - I > 3, an arbitrary interval [b, e), b < e, is partitioned into a I
collection, called canonical covering of (b, e), of at most
[log2(r - 1)] + [log2(r - l)j - 2 standard intervals of T(l, r). I

84
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Basic operations performed on the weighted segment trees include I
addw: 'adding a weight to a given interval'
resetw: 'resetting (to 0) the weight of a given interval' and

getw: 'getting the accumulated weight of a given elementary
interval.'

I

resetw(v: interval,u:node ,wsum: int)
begin
if u is reset-marked then begin

ls(u).w =rs(u),.w =0
mark ls(u) and rs(u) I
unmark u

end I
if (v.B <= u.B and u.E <= v.E)
then begin

mark u
u.w = -(wsum);

end I
else begin

wsum = wsum + u.y 3
if (v.B < u.M) then
resetv(v,ls (u), vsum) I
if (u.M < v.E)
resetw(v,rs(u),wsum) h

end
end I

863

'I



addw(v: interval ,u:node ,weight :int)

begin

if u is reset-marked then

begin

3 is(u).w =rs(u).w =0
mark is u) and rs u)

I unmark, u
end

Uif (v.B <=u.B and u.E <=v.E)

then u.w = u.w + weight.

else begin

if (v-.B < u.M) then

if (n.M < v.E) then

addw(v,rs (u) ,weight)

en end

I getw(ev:int,u:node)
begin

if (u.B =ev and u.E =ev + 1)

3 then return (u. w)
if Cu is reset-marked)
then return(u.w)

if (ev<u.M) then

3 return Cu. v+getw (ev,lsCu))

if (ev>u.M) then

I return(u.v+getw(ev ,rs(u))

end

3 87
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Path Weight Restructuring in Communication Graphs

Michael Lightner i
University of Colorado

Boulder, Colorado 3
The abstract and transparencies for this talk were not available.

I
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I |Assessing Similarity of Pathfinder Graphs

Daniel M. Davenport
Timothy E. Goldsmith

Peder J. Johnson

December 1, 1989

I I Abstract

In this talk we present several graph similarity measures for assessing the
similarity of Pathfinder graphs. This work was motivated by the desire to
measure the similarity between a graph representing a student's knowledge
(a knowledge structure) and that of the instructor's. Our measures compare
connected, labelled graphs, such as knowledge structures and other graphs
produced by Pathfinder. Other graph similarity measures have been proposed
for various other applications but none are suitable for our purposes.

We first give some background and make the hypothesis that knowledge
structures model a student's knowledge of a subject. To verify this we define
several graph similarity measures and with them measure the similarity of a
student's knowledge structure with that of the instructor's. We then correlate
this with that of the student's final grade. The resulting positive correlations
verify our hypothesis. We also show that neighborhoods in knowledge
structures are a more important feature for modeling knowledge than distance
between nodes. The success of our measures in predicting students' final
grades gives us hope that these measures have applicability to proximity
graphs In general.
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Assessing Similarity of
Pathfinder Graphs I

Daniel M. Davenport U
Timothy E. Goldsmith

and
Peder J. Johnson
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I Talk Outline

1. Introduction and BackgroundI
2. Approaches to Graph Similarity Measures

3. Definitions of our Graph Similarity Measures

* 4. Application to Knowledge Structures

* 5. Properties of our Graph Similarity Measures

6. Topics for Further Research.

I
I
I
I
I
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Background I

* Students in a class are asked to rate the U
similarity of pairs of concepts they've learned.

* For each student these raw similarity ratings I
are fed into the Pathfinder algorithm.

* The result is a connected, unweighted graph,

known as a knowledge structure, for each student. U
*An instructor can visually compare his own
knowledge structure to that of a student's and can
sometimes pick out the students that know the
subject.

9
I
I
I
I
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II Hypothesis

* The pattern of edges of a knowledge structure

3 models what a student knows.

3 * That is, Pathfinder extracts from the raw

similarity ratings important features of a
Istudent's knowledge.

9
I
I
I
I
I
I
I
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The Problem I

* Find an objective way to compare an instructor's U
knowledge structure to that of a student's.

*That is, find a function that takes two graphs and

returns a number that reflects their "closeness". U
* Such a function is a graph similarity measure.

* A good graph similarity measure is one that

verifies our hypotheses.

* Thus, we must find a good graph similarity m

measure.

* Keep it simple.

9
I
I
I
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I Some Graph Similarity Measures
* in the Literature

* Herndon
* Compares molecules.
* Computes longest paths in graphs (hard to do).

Paths are converted to linear codes which are

U then compared.

I *Basak et al.
3 *Compares molecules.

* Measures similarity of graph-theoretic indices

I of each graph (such as, the number of nodes,
the degree of sequence, the number of paths

I of length k).
* Combines this data using complicated

I information-theoretic techniques.

I * Graham, Ulam
* Compares abstract graphs.
* Graphs must have same number of edges.

* * Partitions graphs into minimal number of

pairwise isomorphic pieces.
I
n 95
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Our Approach I
I

The graphs we wish to compare are:

* connected
* unweighted

and have a common node set.

* Thus, we already know which nodes correspond U
between the graphs.

* This suggests three approaches:

* Base the measure on the similarity of the

(nonempty) set of neighbors of corresponding
nodes.

* Base the measure on the similarity of the I
incidence of pairs of corresponding nodes.

* Base the measure on the similarity of the

minimal path length between pairs of
corresponding nodes.

I
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I Preliminary Definitions
I

Let G be a connected graph and v, v' nodes in G.I
Define GV to be the set of nodes in G that are neighbors

*l of v (i.e., incident with v).

U Note that Gv is not empty since G is connected and note

* also that v is not in Gv.

I Define G(v,v') to be 1 if v is incident with v' and 0

otherwise.

Define 8G(VV') to be the distance from v to v' in G.

This is always defined since G is connected and is
never 0.

For x, y > 0, define x e y to be x/y if x!y and y/x
3 otherwise.

Let A and B be connected graphs with a common node
*I set V. Suppose further that the elements of V are

linearly ordered.
97
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Neighborhood Based Measures

I
I

C'AB-1 IA,nB,,

C(AB)I- I v I, AvuB, I
I
I

C(1 IA, nB, IC2(,B -I V I vc (I Av I + IBv 1)/2

I
I

C3(A,B() -IAvnBv I 1 AI A nBvI

IVvev IAvI IVIvev IBvI3

9I
U
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I Incidence Based Measures

C 4 (A,B) =1 1 - A(v) v') - B(v, v')I(IV I'-IV 1)/2 v,

C7 (A, B) = Correlation coefficient of A(v, v') and B(v, v')
for all pairs of nodes v, v' with v <v

I9



Distance Based Measures

C5 (A, B) (IV1 1 V 6A(V, V') 0 6 B (V,V')

~ V I2~I V /2 v<vj'

C6 (A, B) = 1 11 6 A (V, V') - 6B (V, V')

(I V I' I V )/ v<,, '5A(V, V') + 6 B(V, V')

C80A, B) = Correlation coefficient Of 6A(V, v') and bB(V, V')

for all pairs of nodes v,v' with v <v

100
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i Testing our Hypothesis
i 20 students and the instructor of a class assessed the

* similarity of 30 concepts from the class.

* 435 pairs of concepts were rated on a scale from 1

(least similar) to 7 (most similar).

* These raw similarity ratings were processed by
i Pathfinder to produce a knowledge structure for each

individual.

For each Ci , the similarity of each student's

knowledge structure and the instructor's were
measured and then correlated with the student's final
course grade.

1
I
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The Correlations I

Neighborhood U
Based C1 = .77
Measure I
Incidence
Based C4 = .38 i
Measure

Distance I
Based C8 = .65
Measure I

I
Conclusion: The patterns of edges of a knowledge

structure model what a student knows if I
final course grades do.

I
I
U
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i New Hypothesis

* Neighborhood based measures are better for

U assessing a student's knowledge than distance based
or incidence based measures.

* * That is, neighborhoods of concepts in knowledge

structures are a more important feature than distance
* or incidence in modeling knowledge with knowledge

structures.
I
I
I
I
U
I
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Testing rur Hypothesis i

* Using partial correlations we can remove the shared

contribution of a measure from every other measure
and thereby examine the unique predictiveness of
the first measure. i

I
I
I
I
I
I
I
I
I
I
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I Partial Correlations

Removing C4 from C 1 -. 73I
Removing C8 from C1 -.53

Removing C1 from C4- .09

R
Removing C8 from C4 - .11

| Removing C1 from 08- -. 14

Removing C4 from C8 -..57I
Conclusion: Neighborhoods of concepts in

knowledge structures are a more
important feature than distance or
incidence in modeling knowledge

* with knowledge structures.

I 105
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Further Properties I
I

For each Ci let Di=1-C i. Then D1 , D2 , D4 , D5 , and D6

are all metrics on the space of graphs with a common I
node set V, while D3 is not.

* We can think of graphs with a common node set V as

subsets of VxV. Form the Boolean ring obtained by
defining multiplication by intersection and addition by
symmetric difference. The multiplicative identity, I, is
the completely connected graph and the zero element I
is the graph with no edges.

I

I
I
I
I
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If we define 0 = 1 then D, is a metric on this space.

* For a graph G over V define:

I G 1 - D(GI) = C(GI)

Then for all A, B,C graphs over V we have:I
JI u BHI+IjAnB II = 11 A 1i + 11 B 11

* I-{A {I= IA[I

A IIA B II II +II B
I

IIAn Bfl<-lAB

SIIA eB I+IIIiA CII IIB CII

I where A is the complement of A.

U It turns out that 11A B 11 = D4(A, B).

I
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Topics for Further Research i
* Generalize our measures to measure similarity of n

molecules.

* Find applications of these measures to general

proximity graphs.

* Find features of knowledge structures other than

neighborhoods that are important in assessing
student's knowledge.

Develop a neighborhood based graph clustering

technique.

I
i
i
i
I
i
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I ABSTRACT

I Generating Large Pathfinder Networks

I
Govinda Kurup

Xerox Corporation
Webster, NY 14580

I
A geometrical approach to the Pathfinder algorithm which reduces the actual

number of computations by half is presented. In the original algorithm, for every
pair of nodes the path length via an intermediate node is computed. The number of
intermediate nodes considered is n-2 (where n is the total number of nodes), for each

pair. The essence of the current approach lies in presorting the distance matrix by
which the number of intermediate nodes inspected is reduced to (n-2)/2. The method
is general and works for any value of the r-metric and q-parameter. The saving in
actual computation time for large PFNs is substantial.

The transparencies for this talk were not available.

II
I
I
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ABSTRACT

Integrity Considerations in Graphs

I
Lowell W. Beineke

Indiana University - Purdue University at Fort Wayne

The vertex-integrity of a graph is defined to be I(G) := min OX + m(G-X)), where the minimum
is taken over all proper subsets X of the vertex set and m(G-X) denotes the largest order of a com-
ponent of G-X. The edge-integrity I'(G) is defined similarly, and both parameters are measures of a
graph's vulnerability to disruption when elements of the graph are destroyed. This talk presents aspects
of integrity that might be useful in analyzing proximity graphs, and in particular these topics: (1)
bounds and algorithms for trees and other planar graphs, and (2) the diameter of a graph.

I
I
I
I
I
I
I
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Coloring Proximity Graphs

I Bob Cimikowski
New Mexico State UniversityI

I
AbstractI

We examine coloring problems for various proximity graphs.
The chromatic number problem is that of finding the minimum
number of colors to assign to the vertices of a graph so that adja-
cent vertices have different colors. 4 ne minimum coloring prob-S'em is to find a minimum assignment of colors for a graph. Both
are hafd problems for arbitrary graphs as well as planar graphs.
For proximity graphs, the problems have applications in
transmitter frequency assignment and event scheduling. The
problems are also of theoretical interest in the field of algorithmic
computational complexity.

The proximity graphs investigated are Relatively Closest
graphs , Relative Neighborhood graphs, Gabriel graphs, and
Delaunay graphs. We restrict die graphs to 2-dirhensional
Euclidean space, for which they are all planar.

Our results include a linear-time test for the chromatic number
of a Delaunay graph and a linear 3-coloring algorithm, an exact
linear 4-coloring algorithm for Relatively Closest graphs, a 4-
coloring heuristic for Relative Neighborhood graphs with remark-
ably good performance, and two minimum-coloring heuristics for
Gabriel graphs which outperform other methods on the same set
of test graphs.

We conclude with a number of open problems and sugges-
tions for further research.

I
I

I
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Coloring Proximity Graphs
I

1. Theoretical Issues.

2. Applications.

3. Delaunay graphs.

4. Relative Neighborhood graphs. I
5. Relatively Closest graphs.

I
I
I
I
I
U
I
I
I
I
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U Applications of Proximity Graph Coloring:

1. Minimum frequency assignment

n n data sampling stations, transmitting at same power.
* neighbors must have different frequencies to avoid

interference.

2. Event scheduling at geographic sites.

events cannot occur simultaneously at neighboring sites.

I
I
I

I
I
I
I
I
I
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Families of Proximity Graphs UI

Euclidean distance metric: I

I
I

Relative Neighborhood Graph (RNG)

"lune of influence (open)"

wOI

// 'I,

LL@ V V

I

Relatively Closest Graph (RCG)

"lune of influence (closed)"

I
144



I

*- Gabriel Graph (GG)

- "circle of influence"

I ew

I!I!
I

* i

!G

I

I
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I

Delaunay Graph (DG)

Voronoi Diagram - partition of plane and points P
into polygons V (p), fbr each p c P. I

V(p)= (x: d(xp) < d(x,q), for each p #q, qeP}.

Delaunay Graph = straight-line dual of Voronoi

Diagram. I
fu,v},{v,w}, and fu,w] are edges of the DG iff
circle (u ,v ,w) is empty.

I

U_
~I

xi

I
I
I
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Combinatorial Properties of Proximity GraphsI
PI. Planar; e <3n-6.

n P2. DG is inner-triangulated and 2-connected.

P3. RCG forbidden subgraphs: K 3, K 2 ,3 .

P4. RNG forbidden subgraphs: K 4, K 2,3, Wn, in 5.

P5. GG forbidden subgraphs: K 4, K 2,3, Wn, it < 5.

Theorem 1 [Toussaint]. For any nondegenerate set of points V,

1) MST(V) cRNG(V) c GG(V) _DG(V).

I 2) RCG(V) cRNG(V) cGG(V) _DG(V).

I
I
I
I
I
i
i

1 147

I



I

Theorem 2 [Haken and Appel]. Every planar graph is 4- I
colorable. I
Theorem 3 [L. Stockmeyer]. 3-colorability is NP-complete for
planar graphs.

Fact. Any planar graph can be 4-colored in 0(n 2 ) time. I
-- but the method is impractical!

Fact. Any planar graph can be 5-colored in linear time. I

I
I
I
I
I
I
I
I
I
I
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Theorem 4.1. [Saint-Lague]. A maximal planar graph is 3-
colorable iff all vertices have even degree.

I
Theorem 4.2. [Cimikowski]. A Delaunay graph G is 3-colorable
iff all interior vertices have even degree.

--implies a linear-time test for X(G).

U Fact. Any 3-colorable Delaunay graph G is uniquely 3-colorable

I (i.e., every 3-coloring induces same partition of V(G)).

--leads to linear-time 3-coloring algorithm.

I
I
I
I
I

I14

I
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Open Problems: I
1. Complexity of Gabriel graph 3-colorability? I
2. Complexity of Relative Neighborhood graph 3-colorability?

Conjecture: both NP-complete.

Proof: difficult without a combinatorial characterization of the I
graphs.

I
I
I
I
I
I
I
I
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I 4-Coloring Heuristic for Relative Neighborhood graphs

U Fact. The minimum degree of any planar graph 5.
I

Recursive Reduction Coloring:

Key steps:

1. delete minimum degree vertex.
2. identify pairs of nonadjacent vertices.

I
identification of vertices u and v: <u,v >

--merge A [u] into A [v] and delete u from G.

I

X Z'1 x>
I CL

I xG V zv,>

I (2)

<V, X F> "

I X 151
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Algorithm RNG_4color. I
1. Delete minimum degree vertex u in G.
2. Stack u and identify 2 or 3 nonadjacent vertices.
3. Repeat steps 1-2 until < 5 vertices remain.
4. Assign colors 1-4 to remaining four vertices.
5. Unstack and assign colors to remaining n -4 vertices of G.

Run-time Analysis: 3
1. all deletions require 0 (1) time.

2. all identifications require 0 (n 2) time.

3. stacking/unstacking vertices requires O (n) time. I
=> T (n)= 0 (n 2 ).

Performance: Successful on random RNGs and maximal RNGs

with n 200 vertices. I
RNG Conjecture:
(1) The minimum degree of any RNG 4.

(2) Every vertex with degree 54 has a pair of nonadjacent neigh-
bors with degree < k, for some constant k < n.

Open Problem: Can we 4-color RNGs in linear time?

I
I
I
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I 4-Coloring Relatively Closest Graphs (RCGs)

Forbidden subgraph for RCGs: K 3.I
Theorem 5 [Cimikowski]. e (RCG ) < 2n-5.

I Corollary 5.1. The minimum degree of an RCG is 3.

I Reduction 4-coloring algorithm (exact):

I while n > 4 do
remove a vertex u with minimum degree ( 3)

and stack u;
assign colors 1-4 to remaining 4 vertices;

while stack not empty do
remove vertex u from stack and assign a color

from 1-4 to u;I
I T(n)=O(n).

I
I
I
I
I
I
3 153
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Chromatic 4-Coloring 3-Coloring
Graphs Number (exact) (exact)

Planar graphs NP-complete 0(n2 ) ?

DGs 0(n) 0(n2) 0(n)

RNGs ?' 0(n2 )?

6C~ ?0(n) ?

GGs ?0(n 2)?

Table 1. Complexities of Coloring.3

Improved heuristics have been found for:

(1) RNG 4-coloring.

(2) GG 4-coloring.

(3) RCG 3-coloring.

154



Conclusions:

I 1. Forbidden subgraphs and relative sparsity make proximity

graphs easier to color than arbitrary planar graphs.

2. RCGs are easiest because of sparsity and minimum degree.

I 3. DGs are easier because of inner triangularity.

3 4. RNGs are somewhat easier because of sparsity and forbidden
subgraphs.

I 4. GGs are only slightly easier (not quite as dense).

5. Good average-case algorithms may be obtainable for RNGs
and GGs.

3 eave = 1.27n and degreeave = 2.5 for RNGs.
eave 2n and degreeave 4 for GGs.

I
I
I

I
I
I
I
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Future Research:

1. Find Kuratowski-like characterizations for proximity graphs.

2. Investigate other hard graph problems for proximity graphs:
dominating sets, independent sets, edge coloring I

3. Study other kinds of proximity graphs.

4. Investigate further relationships between PFnets and other
proximity graphs. I

I
I
I
I
I
I
I
I
I
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Proximity Graphs in Computer Vision

U Godfried Toussaint
McGill University
Montreal, Canada

u The abstract and transparencies for this talk were not available.

I
I
I
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Dynamic Shape Graphs of Molecules

Paul Mezey m

University of Saskatchewan
Saskatoon, Canada

The abstract and transparencies for this talk were not available.

I
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* OP k Relative Neighborhood Graphs

I
I
* M. S. Chang*, C. Y. Tang*- and R.. C. T. Lee*-

I
I
I

I
NM. S. Chang is with the Institue of Computer Science and Information

Engineering, National Chung Cheng University, Chiayi, Taiwan, RepuhliC

of Chian.

I *C. -. Tang is with the Institute of Computer Science, National Tsing

Hua University. Hsinchu, Repulic of China.

, -. T. Lee is with the National Tsing Hua University, Hsinchu,

Taiwaj and Academia Sinica, Taipei, Taiwan, Repulic of China.
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Abstract
A bottleneck optimization problem on general graphs with edge costs is the l

problem of finding a subgraph of a certain kind that minimizes the maximum edge

cost in the subgraph. A Euclidean bottleneck optimization problem is a bottleneck

optimization problem on complete graphs which are constructed from a set of points

in the plane and whose edge costs are Euclidean distances between points connected

by edges. In this dissertation, we define a special graph called k-Relative I
Neighborhood Graph , denoted as kRNG, where k is a positive number , and use it

tu solve the following three Euclidean bottleneck optimization problems:

(A) The Euclidean botf'leneck matching problem.

(B) The Euclidean bottleneck biconnected edge subgraph problem.

(C) The Euclidean bottleneck traveling salesperson problem. I
We prove the following three theorems:

(1) For any instance of Problem A , there exists an optimal solution

which is a subgraph of a 17RNG. I
(2) For any instance of Problem B, there exists an optimal solution which

is a subgraph of a 2RNG. I
(3) For any instance of Problem C , there exists an optimal solution

which is a subgraph of a 20RNG.

All numbers of edges of these three special graphs are O(n). Therefore we can find

optimal solutions for the above three problems from these three k-relative

neighborhood graphs. In this way, we can solve Problem A and Problem B in O(n 2) I
time, and also an efficient approximation algorithm for Problem C is developed. The

third theorem above gives us an interesting graph theoretic result: 20RNGs are

Hamiltonian.

160
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I 1 The tune of two points on the plane

Let p and q be two points on the plane. Draw two circleswith radius dpq

(Euclidean distance between p and q) centered at p and q respectively as shown in

the following figure:

IPI
The shaded area (not including its boundary) is called the lane of p and q.

rormaiv, U Npq = { X x E R2 dpx < dpq and dqx < dpq }.

. k Relatlve Neighbors

I
Given a set V of points on the plane, p and q are called k relative neighbors

if and only if

and (i) p e V and q E V,

I (ii) LUNpqflVI < k.

I
I
I
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3 . k Relative Neighborhood Graphs

Given a set V of points on the plane, connect two points if their luneI

contains less than k points of V. The graphs constructed in this way are called k

relative neighborhood graphs. Formally, kRING = (VE,) where

Er ={(p, q) Ip, q E V and ILUNpqn flVj< k I.

See the following figures for examples:

P'II
.........

~RNC
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I 4 Properties of Relative Neighborhood Graphs (RNG)

I
The concept of k relative neighborhood graphs is generalized from that of

3 relative neighborhood graphs which was defined by Toussaint. In fact,

IRNG = RNG.

I (1) RING is connected.

(2) BRNG is planar.

(3) There exists a minimum spanning tree which is a subgraph of -'LNG.

(4) There exists a bottleneck spanning tree (a spanning tree whose

ma-ximum edge cost is minimized) which is a subgraph of PRNG.

(5) The number of eiges of a R.NG is less than 3n---6 where n = V

I
* 5. Properties of k Relative Neighborhood Graphs

I (1) If V > k, then kRNG is k connected.

(2) The number of ecges of a kRNG' is less than 18kn. In other words.

kRNGs are sparse when k is relatively smaller than n.

- (3) For k > 20. kRNGs are hamiltonian.

I
I
I
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6. Applications of kRNG I
Help to solve the following three Euclidean bottleneck optimization

problems:

(1) The Euclidean Bottleneck Matching Problem.

(2) The Euclidean Bottleneck k---<onnected edge subgraph problem.

(3) The Euclidean Bottleneck Traveling Salesperson Problem.

I
i.The Euclidean Bottleneck Matching Problem

Given a set V of points on the plane, a Euclidean Bottleneck Matching is a 3
perfect matching of V whose longest matched edge is minimized. The Euclidean

Bottleneck Matching Problem is, given a set V of points, to find a Euclidean i
Bottleneck Matching.

Lemma: There exists a Euclidean Bottleneck Matching which is a subgraph

of I7RNG.

Since 17R.NG is a sparse graph, we can find a Euclidean bottleneck

matching from it more quickly instead from the complete distance graph of V. I

I
I
I
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S. The Euclidean Bottleneck k-connected Edge Subgraph

Given a set V of points on the plane, we can connect it into a k-connected

graph. This graph is called a Euclidean k-connected edge subgraph (a subgraph of

I the complete graph of V). A Euclidean k-connected edge subgraph whose longest

edge is minimized is called a Euclidean bottleneck k-connected edge subgraph.

Lemma: There exists a Euclidean bottleneck k-connected edge subgraph

I which is a subgraph of kRNG.

Corollary: if n > k, then kRNG is k-connected.I
9.The Euclidean Bottleneck Traveling Salesperson Problem

The Euclidean bottleneck traveling salesperson problem is to connect V

into a Hamiltonian cycle such that the longest edge in the cycle is minimized. Such

a cycle is called a Euclidean Bottleneck Hamiltonian Cycle.

Lemma: 'There exists a Euclidean bottleneck Hamiltonian cycle which is a

subgraph a 20RNG.

Corollary: if k > '20, than 2uRNG is Hamiltonian.
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ABSTRACT I

Monotonic Search Networks (MSNETs)

I
Govinda Kurup (Presenter)

Xerox Corporation
Webster, NY 14580

Don Dearholt
Department of Computer Science I

Mississippi State University
MS 39762 I

A new network called a Monotonic Search Network (MSNET) is presented. In these networks,
there is a monotonically decreasing distance function, and therefore a monotonic path, between every
pair of nodes in the network. After discussing the foundations, an algorithm for generating the MSNET
from the Relative Neighborhood graph of a set of nodes (by adding some edges) is given. An applica-
tion of the MSNET as the underlying structure for an associative database for computer vision is also
discussed.

I
I
I
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COMPUTER VISION

I
GOAL: SCAN THE ENVIRONMENT AND MAKE DECISIONS

WITHOUT HUMAN INTERACTION

i REQUIRES: KNOWLEDGE REPRESENTATION

CLASSIFICATION

ABILITY TO DESCRIBE SCENE

RECONSTRUCT SCENE

ENHANCE SCENE

i MODIFY SCENE

I
I
I
I
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I ABSTRACT

GENIE: Rapid Prototyping for Network Models

I
Chris Esposito

Boeing Advanced Technology Center
Seattle, Washington 98124

Networks and graphs are very often used to model a wide variety of systems and phenomena,
from telecommunications networks to the organization of human semantic memory. This presentation
describes a system called GENIE (General Extensible Network Interface Editor) that supports the rapid
construction of many different sorts of domain-specific network models. GENIE provides basic graph-
theoretic objects (nodes, edges, subgraphs, etc.) as primitive constructs and suppoits common attributes
such as object position, color, shape, and layout/manipulation functions. An object-oriented single-
inheritance extension language allows the user to attach arbitrary application-specific data structures to
objects, specify graphical constraints, and provide special layout or manipulation functions. A tailorable
user interface supports different interaction styles. An application interface alle.vs GENIE to be used as
a "graph server" for other applications that need a flexible graph display facility but do not want to
invest the effort to develop a custom system of their own. GENIE is being implemented in C++ and
Xscheme on top of XlI/NeWS.

I

I
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GENIE U
Rapid prototyping for Network Models i

I
I
I

Dr. Chris Esposito
Boeing Advanced Technology Center

Seattle, WA
December 2, 1989
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I
GENIE

Introduction i
I

Network and graph models are useful in a wide variety of
areas:

Semantic Networks i
Parse Trees
Process Management i
Information Retrieval
Distributed File System Management i
etc. 3

i
I
I
i
I
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GENIE
Introduction

A closer look at network-model applications

1. Common functionality/data-

position
color
type
shape
layout/manipulation
etc.

2. Application-specific functionality/data-

arbitrary data structures attached to objects
special structural requirements
special layout or manipulation functions
differing interaction styles
etc.
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GENIE
Introduction I

A closer look at network-model applications

2 different approaches to providing application-specific
functionality/data: I
A. Build entire application in GENIE

- self-contained system
- e.g., ANETS

B. Front-end / graph-server for other applications

- need interapplication communication I
- parse trees for an NLP system

I
I
I
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I
I

I
I GENIE

RequirementsI
I

1. Provide a parts kit for common attributes & functions

I
2. Provide a means for customizing & extending GENIE

I
3. Provide i means for working with other applications

I

I
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GENIE
GENIE Architecture I

I
1. Display engine

2. Tailorable user interface

3. Application interface

4. Extension language

5. Construction & layout requirements

I
I
I
I
I
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GENIE
GENIE ArchitectureI

* Display Engine

Core system written in C++ 2.0
X1 1/NeWS
Multiple windows / "graph buffers"
3-D extension will probably use PEX (PHIGS Ext. to X)

I181
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GENIE
GENIE Architecture

I
Tailorable user interface

several ideas borrowed from GNU Emacs

- inousemaps
- keymaps

e.g., selection by
point-click
circling
selection-box

I
I
I
I
i
I
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I GENIE
GENIE Architecture

* Algorithmic layout taxonomy

I 1. Graph class
trees, planar, directed, etc.

2. Graphical standard
straight lines
grid embedding

I 3. Aesthetics
minimize area

edge crossings
# of edge bendsI

4. Other constraints
* e.g., critical path nodes on straight line

I5. Computational complexity
polynomial time
NP-hard problems

I heuristics
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UNSOLVED PROBLEMS AND APPLICATIONS

IN PROXIMITY GRAPHS

Donald W. Dearholt i
Department of Computer Science

Mississippi State University
MS 39762

Proximity graphs offer a delightful blend of theory and applications. I shall pro- i
vide a high-level description of some of the problems in which I have been engrossed
in or tantalized by, partly in terms of the applications which would benefit by their
solutions. I

The first problem concerns the most efficient utilization of proximity graphs in
the organization of data in a database intended for robotics applications. The database
described by Kurup during this workshop is an example of the application of proximity
graphs to this specialized database, but some issues remain unresolved. For example,
the conclusion of the search process may result in any degree of match, from essen-
tiallv exact to a clear mismatch; if the _:,atch is not exact, then it would be an
improvement over our present capabilities (using the monotonic search network) if we
knew that the search process resulted in the best match available in the database.
While traversing the search path, it would also be expeditious to collect the data
needed to add the new exemplar into the database efficiently, if that is desired. It is 1
likely that a better understanding of proximity graphs will help in the solution of both
of thcse problems.

Information retrieval, particularly in the context of a hypertext system with a
graphical interface, is likely to benefit from the organization of data according to the
edges in some proximity graph. The work on Pathfinder in this area shows some
promise, and further refinement may be possible using a more appropriate proximity
graph. Important features of this application include (1) -he clustering and support of
higher levels of abstraction provided by the Pathfinder networks, (2) multiple associa-
tive paths between highly related concepts, (3) effective search and browsing pro-
cedures, and (4) efficient ways of adding new information. The proximity graphs
which include any Pathfinder network provide support for the first two items above;
the third and fourth items on the list, however, are more difficult, particularly in the
area of information retrieval in which assumptions regarding keys or semantics are I
involved. The use of proximity graphs may allow an approach which lies somewhere
between the (relatively simple) purely syntactic and the (relatively expensive) semantic
modeling approaches in both cost and performance.

The most fascinating problem, from my perspective, is the possibility of develop-
ing a unified model of some important aspects of perception and cognition. While this
may sound grandiose, the Relative Neighborhood Graph provides meaningful percep-
tual representations of objects; the Delaunay triangulation graph is, among other things,
the dual of a representation of the decision space (the Voronoi diagram) for a
minimum-distance pattern classifier (which could be based on the Selfridge model
called Pandemonium); and the Pathfinder networks are intended to model human asso-
ciative memory. Thus it now appears conceivable to consider the possibility of a
unified model for some important aspects of both cognition and perception. In this
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model, percepts would be represented by one type of proximity graph, say "P"; then
-- some transformations upon "P" would generate, augment, or modify a representation

for a corresponding set of concepts, represented by another reiated proximity graph,
say "C". The system of proximity graphs used in this unified model and the transfor-
mations between graphs could provide a new perspective on the transformations of
information from episodic memory to semantc memory.

I
I
I
I
I
I
I
I
I
I
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SOME UNSOLVED PROBLEMS ON PROXLMITY GRAPHS*

Godfried T. Toussaint

School of Computer Science
McGill University

3480 University Street
Montreal, Quebec

CANADA H3A 2A7

I
ABSTRACT

Recent developments in the field of computational morphology (spatial and I
cluster analysis, computer vision, pattern recognition, computational percep-
tion, etc.) are making ever increasing use of proximity graphs. Thus it be-
comes increasingly relevant to understand the properties of such graphs as
well to design efficient algorithms for their computation. In this note we men-
tion some open problems in this area.

1. Computational Morphology

1.1 The Shape of a Set of Points

1.1.1 Introduction

One of the central problems in shape analysis is extracting the shape of a set of
points. Let S=txl, x2 , ... , xnJ be a finite set of points in the plane. The relative neighbor-

hood --aph (RNG) [To80a] and the 0-skeletons [KR851 are two structures that have been 
well investigated in this context. The RING is obtained by joining two points xi and xj of S

with an edge if Lune(xi, xj) does not contain any other points of S in its interior. Lune(xi, xj)

is defined as the intersection of the two discs centered at xi and xj with radius equal to the

distance between xi and xj. One of the best known proximity graphs on a set of points is the

Delaunay iMangulation (DT) and it is well known that the DT is a supergraph of the RING

[To80a]. The 0-skeletons are a generalization of RNG's and Gabriel graphs and the lune-

based neighborhoods in question are a function of a parameter P. In [To88b] a new graph
termed the sphere-of-influence graph is proposed as a primal sketch intended to capture the

low-level perceptual structure of visual scenes consisting of dot-patterns (point-sets). The
graph suffers from none of the drawbacks of previous methods and for a dot pattern consist-
ing of n dots can be computed efficiently in O(n log n) time. For a survey of the most recent
results in mis area see the papcr by R-k.,, [Rau 3.

Presented at the First Workshop on Proximity Graphs, Las Cruces, New Mexico, December 1989.
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1.1.2 The Relative Neighborhood Graph

In [JK89] it is shown that the RNG in 3-space can be computed in 0(n log n ) timeand 0(Q3 (S)) space where . 3 (S) denotes the size of RNG(S). It is an open question

whether this upper bound can be improved. It is also not known how large .3 (S) can be over

all instances of S. Denote this value by 9 3 (n). It is shown in [J1K89] that g3(n) =

O(n where c is a positive constant and they conjecture that .3 (n) = 0(n).

1.1.3 (-Skeletons

In [KR85] it was shown that lune-hased f-ck.2!etons wit R could be.....
in O(n 2 ) time. In [JKY89] it is shown that lune-based P-skeletons with 1 < P _< 2 can be

constructed in linear time from the Delaunay triangulation in any L metric. The Delaunay

I triangulation in any L metric can be computed in O(n log n) time [Le8]. It is an open

question whether for 3 > 2 these skeletons can be computed in o(n 2 ) time,.

1.1.4 The Sphere of Influence Graph

Avis and Horton [AH85] showed that the number of edges in the sphere-of-influence
graph is bounded above by 29n. The best upper bound to date is 17.5. 1thas follows from a
lemma of Bateman in geometrical extrema suggested by a lemma of Besicovitch (Geometry,
Nay 1951, pp. 667-675) and an observation of Kachaski. Bateman's lemma gives 18n and
Kachalski's trick reduces it by .5. The same trick reduces Avis & Horton's bound by .5.
David Avis conjectures that the best upper bound is 9n.

1.2 Polygon decomposition

1.2.1 Simple polygons

The problems of decomposing simple polygons into various types of more structured
polygons have a number of practical applications and have received considerable attention re-
cently from the theoretical perspective. See [To88a] for several papers discussing recent is-
sues. In pattern recognition it is desired to obtain decompositions into meaningful parts.
The so-calleci component-directed methods decompose the polygon into well established
classes of simpler polygons such as convex or star-shaped polygons. These decompositions
are satisfactory from the morphological point of view only rarely. Another approach which
may be superior is to use procedure-directed methods based on proximity graphs. In
[To80b] it was proposed to use the relaive-neighbour decomposition (RND) of a simple

polygon P of n vertices and an O(n3 ) time algorithm for its computation was given. ElGindy

.. Ld i'oussaint [hF88] reduced this complexity to O(n2 ). Two vertices pi and pj of a simple
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polygon are relative neighbours if their lune contains no other vertices of P that are visible I
from either pi or pj. Two vertices pi and pj are said to be visible if the line segment [pi, pj]

lies in P. It is an open question whether this decomposition can be computed in o(n 2 ) time i
and neither is a super-linear lower bound known for this problem.

1.2.2 Special classes of polygons i
The fastest known algorithm [ET88] for computing the RND of a simple polygon is

O(n2). On the other hand, for convex polygons the RND can be computed in O(n) time
[Su8 3], and so can the Delaunay triangulation [AGSS]. however, it is shown in [ART87]
that O(n log n) is a lower bound for computing the Delaunay triangulation on the vertices of a
star-shaped or monotone polygon. It is unknown whether any other proximity graphs can be
ccmputed in linear time for the case of convex polygons. Furthermore, for most proximity

graphs it is unknown whether they can be computed in o(n 2 ) time for special classes of sim-
ple polygons such as star-shaped, nznotone or unimodal polygons. For unimda! polygons
the RNG and MST can be computed in O(n) time [0189]. It is unknown whether the De-
launay triangulation on the vertices of a unimodal polygon can be computed in linear time. I

I
2. Recognizing Proximity Graphs

One area as yet almost totally unexplored concerns the question of the recognition of i
proximity graphs. The only known result concerns Delaunay triangulations. Given a triangu-
lation T of a set of n points, Ash & Bolker [AB85] have shown that whether T is a Delaunav
t ianguiation can be determined in O(n) time.

3. Graph Theoretic Properties of Proximity Graphs

Another area which has received little attention concerns the determination of graph
theoretical properties of proximity grnphs. The only proximity graphs which have been care- i
fully examined are the Gabriel graph [MS80] and the RNG [Ur83].

4. Probabilistic Properties of Proximity Graphs I
Yet another area which has received little attention concerns the determination of

probabilistic and statistical properties of proximity graphs. The only proximity graphs which
have been carefully examined are the Delaunay triangulation, the Gabriel graph, and the
RNG. Miles [Mi70] has done considerable work on the probability distribution of random
variables describing characteristics of the Delaunay triangulation. See also Getis & Boots
[GB781. Devroye [De88] obtains a variety of results concerning the expected number of
edges in proximity graphs such as the Gabriel graph. ,"- RNG and several types of nearest i
neifhhn,,r rr Aih,. ;'i, Lho~a .,t" tis type are known for all the other proximity graphs dis-
cussed in this note.
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